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SYNOPSIS. Concrete dam displacements measured by pendulum need to 
be interpreted to evaluate the dam behaviour.  This article presents different 
statistical models used to evaluate the thermal displacements in concrete 
dams.  The difficulties involved in assessing these displacements are 
highlighted and possibilities for improvements are presented.  A new model 
based on both water and air temperatures is then detailed and the results 
obtained for a French dam are presented. 

INTRODUCTION 
Dam safety is an important issue for dam management.  Although the 
probability of dam failure is very low, such an event would lead to very 
significant losses.  The associated risk is thus very high.  Moreover, as the 
structural vulnerability increases with dam ageing, it is essential to monitor 
dams to ensure their safety.  The structural health diagnosis of large 
concrete dams is based on monitoring which aims at detecting and 
quantifying, as soon as possible, the slightest change in dam behaviour. 

Monitoring consists of collecting data from instruments and interpreting 
these measures.  The main part of dam surveillance is to analyse gathered 
data to ensure that the dam is functioning as intended, to detect any possible 
anomalies, and to warn of any change which could endanger its safety.  Data 
analysis is also a means to better understand the long term behaviour of 
dams.  Since structural responses of dams are influenced by several factors 
engineers use different analytical tools to evaluate dam behaviour from 
collected data.  

The analysis of displacement measurements from direct or inverted 
pendulums represents an important part of concrete dam surveillance.  
These displacements are influenced by various factors such as hydrostatic 
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load, thermal effect and time-dependent irreversible phenomena (creep, 
alkali-aggregate reaction, adaptation, consolidation, damage...).  The 
simplest analysis consists of plotting measured displacements as a function 
of time.  Nevertheless, this type of graph is difficult to analyse because of 
scatter due to external reversible influences (thermal and filling conditions).  
Consequently, to provide surveillance of its dams, EDF uses statistical 
models to separate the influences of the different explicative factors.  It is 
then possible to observe anomalies or irreversible trends.  Moreover, the 
understanding of reversible influences gives important information on the 
behaviour of the structure. 

MODELS IN USE AND POSSIBILITY OF IMPROVEMENT 
Displacement measurements are widely influenced by the sequence of 
thermal conditions and filling conditions.  Consequently, direct surveillance 
of displacements can only be effective by comparison of similar situations 
(thermal state and retention level).  In order to prevent this problem and to 
generalise comparisons of all situations encountered, EDF uses statistical 
analytical methods to correct measurements from both thermal and 
hydrostatic influences (postulated as reversible influences) and thus to 
highlight irreversible behaviour (figure 1).  

  
Figure 1. Measured and corrected displacements (top left), modelled 
thermal displacements (top right) and modelled hydrostatic displacements 
(bottom) 

These statistical models are called “surveillance at reconstituted constant 
conditions”.  Two of these models are mainly used to analyse displacements 
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of concrete dams: HST (Hydrostatic, Seasonal, Time) and HSTT (Thermal 
HST). 

HST (Hydrostatic, Seasonal, Time) 
The so-called HST statistical analysis method has been developed at EDF 
by Willm and Beaujoint [1].  In this model the measured displacements are 
assumed to be the sum of three influences: 

• The thermal influence which is modelled as a sinusoidal function of 
the season only.  The seasonal evolution depends on an angle S which 
is equal to 0° on 1 January and to 360° on 31 December. 

• The hydrostatic influence, modelled as a fourth degree polynomial 
function of the retention level Z. 

• The irreversible influences, if any, modelled by a combination of a 
polynomial function (creep, swelling and quick evolutions) and an 
exponential function of the time t (consolidation, adaptation ...) 

Recorded dam displacements Y0 are thus modelled by the following 
expression: ଴ܻ = ܽଵ + ܽଶ ⋅ ݐ + ܽଷ ⋅ ଶݐ + ܽସ ⋅ ଷݐ + ܽହ ⋅ ସݐ + ܽ଺ ⋅ ݁ି௧ ఛ⁄  
(1)  +ܽ଻ ⋅ ܼ + ଼ܽ ⋅ ܼଶ + ܽଽ ⋅ ܼଷ + ܽଵ଴ ⋅ ܼସ + ܽଵଵ ⋅ cos(ܵ) 
  +ܽଵଶ ⋅ sin(ܵ) + ܽଵଷ ⋅ cos(2S) + ܽଵସ ⋅ sin(2S) + ߳ 

The coefficients a1 to a14 and the parameter τ are adjusted on measurements 
by the least square method.  ε represents the scattering of the model which 
contains the uncertainties of both the experimental measurements and the 
model. 

The results obtained with HST over several decades of displacement 
analysis of concrete dams have confirmed the relevance and robustness of 
this method.  The main advantage of this model is its simplicity and the fact 
that it does not need temperature measurements to account for the thermal 
influence. 

However, the main limitation of this model is that the thermally induced 
displacements are modelled as an annual periodic response.  Approximating 
the thermal effect by an average seasonal distribution gives relevant results 
in the vast majority of cases.  Nevertheless, since the real temperature 
evolution is not accounted for in Eq. (1), the performance of HST is not 
always sufficient, in particular for time periods colder or warmer than 
seasonal average.  Moreover, HST is not able to capture a drift in the 
thermal state of the structure (global warming).  Consequently, if such a 
drift occurs it could be interpreted as an irreversible effect. 



DAMS: ENGINEERING IN A SOCIAL & ENVIRONMENTAL CONTEXT  

HSTT (Thermal HST) 
Since 2004, an improvement of the HST model, called HSTT (Thermal 
HST) [2] is in use for arch dams.  This model completes the seasonal 
function by a corrective term which takes into account the delayed effect of 
the structure to daily temperature difference between the one recorded in the 
air and the average seasonal one for the time of the year.  As for hydrostatic 
and time-dependent effects, they stay unchanged compared to the HST 
model.  In this model, the major factor in thermally induced displacement is 
assumed to be the air temperature.  For each day j, the air temperature Θ(j)  
comprises the sum of the average seasonal air temperature N(j) (modelled 
by a sinusoidal function with a period of one year) and the difference ΔΘ(j) 
between the daily recorded temperature and this seasonal temperature.                                                 

(݆)߆    (2) = ܰ(݆) +  (݆)߆߂
The principle of HSTT is described in table 1. 

Table 1. Principle of HSTT 
Air 

temperature 
= Average seasonal 

temperature at day j N(j) 
+ Deviation at day j 

ΔΘ(j) 
  Thermal inertia of the structure 

(delay and attenuation) 
Thermal 

displacement 
= Seasonal function of period 1 

year with shifted phase 
same for HST & HSTT 

+ Thermal corrective 
function delayed 

specific HSTT 

The delayed elevation ΔΘR of the mean temperature of the structure induced 
by the air temperature deviation ΔΘ is calculated by convolving the 
deviation ΔΘ with the impulse response of the structure.  This convolution 
product can be expressed as a recurrence formula: 

ݐ)ோ்బ߆߂    (3) + (ݐ݀ = ݐ)߆߂ + 1)(ݐ݀ − ݁ௗ௧ బ்⁄ ) + ௗ௧ି݁(ݐ)ோ்బ߆߂ బ்⁄  

In Eq. (3) the parameter T0 is the characteristic time of the structure 
representing its thermal inertia which depends on the geometrical and 
thermal properties of the structure. 

The thermally induced displacements due to the deviation ΔΘ are then 
assumed to be proportional to the delayed elevation ΔΘR of the mean 
temperature with a factor of thermal sensitivity K. 

In the HSTT model, the recorded displacements Y0 are modelled by: 

 ଴ܻ = ܽଵ + ܽଶ ⋅ ݐ + ܽଷ ⋅ ଶݐ + ܽସ ⋅ ଷݐ + ܽହ ⋅ ସݐ + ܽ଺ ⋅ ݁ି௧ ఛ⁄  
(4)     +ܽ଻ ⋅ ܼ + ଼ܽ ⋅ ܼଶ + ܽଽ ⋅ ܼଷ + ܽଵ଴ ⋅ ܼସ + ܽଵଵ ⋅ cos(ܵ) 
  +ܽଵଶ ⋅ sin(ܵ) + ܽଵଷ ⋅ cos(2S) + ܽଵସ ⋅ sin(2S) + ோ்బ߆߂ܭ + ߳ 

In Eq. (4) the coefficients a1 to a14, K and T0 are adjusted on measurements 
by the least square method.  ε represents the scattering of the model which 
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contains the uncertainties of both the experimental measurements and the 
model. 

This improvement results in a better correction of the thermal influence for 
colder or warmer time periods than usual.  The HSTT model can explain in 
the vast majority of cases the displacements at the crest of thin arch dams.  
For example, the heat wave of 2003 in France generated important 
displacements which were not explained by the HST model and are better 
explained by the HSTT model.  Besides, compared to HST, HSTT reduces 
the scatter of corrected data and has a better explanatory quality.  This 
reduced scatter allows an earlier detection of anomalies and thus the 
structure behaviour can be better diagnosed. 

Possibilities of improvement 
It is well known that temperature variations are one of the most important 
influences that affect the recorded displacements.  Thus, this thermal effect 
has to be modelled as accurately as possible.  There are different thermal 
influences which act on dam displacements: air temperature, water 
temperature, heat transfers from foundations, solar radiation... 

The HST model takes into account all these different phenomena in only 
one seasonal function.  In the case of HSTT, the deviation of air temperature 
compared to the average seasonal value is separated from the other 
influences.  Nevertheless, in both models, the not all the different thermal 
influences are explicitly taken into account.  An important possibility for 
improvement for the model is to separate all these influences which are 
probably not well modelled by a unique seasonal function.   

Moreover, in the HST and HSTT models the seasonal and the hydrostatic 
influences are considered to act separately, whereas they are in reality 
coupled.  Indeed, the influence of water temperature is dependent on the 
retention level.  Besides, the retention level often follows a cyclic evolution 
due to supply and demand requirements.  If this cycle of retention level 
variation is in phase with the seasonal temperature variation, hydrostatic and 
thermal effects are correlated and it is then difficult to separate them. 

USE OF TEMPERATURE MEASUREMENTS 
As detailed above, the HST model does not need any temperature 
measurements to evaluate thermal effect.  The use of temperature 
measurements in the models allows the thermal state of the structure to be 
better taken into account and permits more precise evaluation of thermally 
induced displacements.  Several methods are available to use temperature 
measurements in statistical models. 

In the HSTT model, an improvement has been incorporated by integrating 
air temperature measurements.  The elevation of the mean temperature 
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within the structure is determined by solving a direct one-dimensional heat 
transfer problem with recorded air temperature as a boundary condition. 

It is also possible to utilise internal concrete temperatures if representative 
internal thermometric data are available.  One of the advantages of this 
method is to account for all external influences (radiation, air temperature, 
water temperature) because internal thermometers directly measure the 
effect of these influences.  However, one issue is the loss of information 
when using embedded thermometers.  Indeed, the high frequencies of the 
thermal signal do not penetrate deeply into structures and hence are not 
captured by thermometers if they are too far from the surface.  For example, 
a signal with a time period of one day will have a depth of penetration of 
approximately 0.50m.  If the thermometer is located at more than 0.50m 
from the surface it will not measure the daily variations of these external 
thermal influences.  Nevertheless, as these high frequency signals impact a 
relatively small part of the structure, their effect on global displacements 
should be low. 

The first approach proposed is to directly use the measured temperature in 
the statistical formulation.  This is the case in the HTdT model (hydrostatic, 
direct temperature, time) proposed by Weber [3].  In this model temperature 
measurements inside the dam are new explicative variables that replace the 
seasonal function.  A general formula of this type of model is given by 
Eq. (5) where nT is the number of thermometers used and Ti is the 
temperature measurements from thermometer i.  It is preferable to use the 
measurements for several elevations near both the upstream and the 
downstream surfaces and in the middle of the cross section in order to 
identify the different thermal influences as well as possible.  

(5) ଴ܻ = ܽଵ + ܽଶ ⋅ ݐ + ܽଷ ⋅ ଶݐ + ܽସ ⋅ ଷݐ + ܽହ ⋅ ସݐ + ܽ଺ ⋅ ݁ି௧ ఛ⁄  
                    +ܽ଻ ⋅ ܼ + ଼ܽ ⋅ ܼଶ + ܽଽ ⋅ ܼଷ + ܽଵ଴ ⋅ ܼସ + ∑ ܾ௜ ⋅ ௜ܶ௜ୀ௡்௜ୀଵ + ߳	                 
A better way to utilise concrete temperatures is to use them to reconstitute 
the thermal field inside the structure and to calculate displacements from 
this thermal field.  In this case a one-dimensional inverse problem is solved 
to obtain the temperature at the surface from two thermometers inside the 
structure and then the thermal field is rebuilt from the surface temperatures.  
This method has been treated by Léger and Leclerc [4] in the case of a 
periodic thermal signal and by extension for any transient signal by adding 
trailing temperatures at the end of the signal.  The reconstituted thermal 
field is deconstructed along different sections by average and linear 
temperature differences which are used in the so-called HTT (Hydrostatic, 
Temperature, Time) model.  The formulation of this model is given by 
Eq. (6) where nTsec is the number of sections where the one dimensional 
thermal field T(x) is computed from thermometers located in the section, 
Tm,i and Tg,i are respectively the mean and linear difference temperatures of 
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the section i and Tref is the reference temperature (long term average 
concrete temperature).  In this model the thermally induced displacements 
are separated into two parts.  One is proportional to the elevation of the 
mean temperature from the reference temperature, and the other is 
proportional to the linear difference temperature.  As in the HTdT model, the 
sections have to be properly chosen to account for all the thermal influences.  
However, in practice, the chosen sections are the ones which contain the 
thermometers. ଴ܻ = ܽଵ + ܽଶ ⋅ ݐ + ܽଷ ⋅ ଶݐ + ܽସ ⋅ ଷݐ + ܽହ ⋅ ସݐ + ܽ଺ ⋅ ݁ି௧ ఛ⁄  
(6)  +ܽ଻ ⋅ ܼ + ଼ܽ ⋅ ܼଶ + ܽଽ ⋅ ܼଷ + ܽଵ଴ ⋅ ܼସ 
  +∑ ൫ܾ௜ ⋅ ൫ ௠ܶ,௜ − ௥ܶ௘௙൯ + ܿ௜ ⋅ ௚ܶ,௜൯௡்௦௘௖௜ୀଵ + ߳ 

A more rigorous approach to calculate thermal displacements from 
embedded thermometers has been proposed by Weber, Perner and 
Obernhuber [5].  In this method, the temperatures at the boundaries are 
calculated from internal thermometers with a one-dimensional inverse heat 
transfer problem.  These temperatures are then extrapolated to the entire 
upstream and downstream surface and convolved with impulse responses to 
compute the mean and the gradient of the temperature field across the 
structure.  The thermal displacements are not calculated statistically as 
before but employ the thermo-elastic reciprocal theorem.  To calculate the 
displacement at a given point in a given direction, one needs to know the 
stress first invariant field Θ = σxx + σyy + σzz in the structure due to a unit 
force applied at this point and in this direction.  This stress field can be 
obtained by a finite element simulation.  The thermal displacements δ due to 
the thermal field T can be calculated by: 

(ݐ)ߜ   (7) = ߙ ⋅ ׬ ߆ ⋅ (ݐ)ܶ ⋅ ௏ݔ݀  

In this expression α is the thermal expansion coefficient.  To simplify Eq. (7) 
it is assumed that the stresses vary linearly over the thickness for the applied 
unit force.  This approximation is reasonable for a thick enough structure 
and far enough from the foundations.  With this approximation the integral 
can be written in the radial direction as Eq. (8) where ΘM, ΘD, TM and TD 
are the mean and the gradient of the first invariant and the mean and the 
gradient of the temperature over the thickness respectively. 

׬  (8) ߆ ⋅ (ݐ)ܶ ⋅ ܸ݀௅଴ = ܮ ⋅ ெ߆ ⋅ ெܶ(ݐ) + ௅ଷ ⋅ ஽߆ ⋅ ஽ܶ(ݐ) 
Eq. (8) justifies that only the mean and the gradient of the temperature field 
are necessary to compute thermal displacements if the structure is thick 
enough.  The mean and the gradient of the temperature are then considered 
to be constant over horizontal arches to compute the integral along an arc of 
length s (Eq. 9). 
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ߙ  ⋅ ׬ ׬ ௅଴௦଴߆ ⋅ (ݐ)ܶ ⋅ ݀ܵ = ெܶ(ݐ) ⋅ ܮ ⋅ ߙ ⋅ ׬ ெ௦଴߆ ⋅ ݀s 
         + ஽ܶ(ݐ) ⋅ ௅ଷ ⋅ ߙ ⋅ ׬ ஽௦଴߆ ⋅  ݏ݀
(9)     = ெܶ(ݐ, ℎ) ⋅ (ℎ)ܯ + ஽ܶ(ݐ, ℎ) ⋅   (ℎ)ܦ

(ℎ)ܯ			ℎݐ݅ݓ  = ܮ ⋅ ߙ ⋅ ׬ ெ௦଴߆ ⋅ (ℎ)ܦ			݀݊ܽ			ݏ݀ = ௅ଷ ⋅ ߙ ⋅ ׬ ஽௦଴߆ ⋅  ݏ݀

The variables M(h) and D(h) give respectively the influences of the mean 
and the gradient of the temperature at the dam height h on the thermal 
displacements where the unit force has been applied.  The final thermal 
displacements can be obtained by integrating Eq. (9) over the height. 

A difficulty in the use of embedded thermometers is the necessity to use 
several measurements to correctly reconstitute the thermal field.  Indeed, 
water temperature depends on the depth; solar radiation is not homogeneous 
on the impacted surface (shade effect, and orientation of the surface); and 
near the foundations the measurements are highly influenced by the 
conductive heat transfer from the rock. 

NEW MODEL AND APPLICATION 
Based on the different ideas set out above, a new model has been developed 
at EDF.  This model accounts for air and water temperature by solving a 
one-dimensional heat transfer problem at several elevations of the dam with 
water and air temperature signals at the boundaries.  A seasonal function is 
also used to take into account the radiative effect. 

Impulse responses 
For a one dimensional semi-infinite medium starting from x=0, the 
structural response to an impulse (Dirac) of weight Tup is given by Eq. (10), 
where t is the time, and a is the diffusivity of the medium. 

(10)        ௦ܶ௘௠௜ି௜௡௙௜௡௜௧௘(ݔ, (ݐ = ೠ்೛⋅௫ଶ⋅௧⋅√௔⋅గ⋅௧ ⋅ ݁ షೣమర⋅ೌ⋅೟ 
To obtain the solution for a finite medium of length L, one needs to 
superpose an infinite number of semi-infinite solutions in order to satisfy the 
boundary conditions at x=0 and x=L.  The mean temperature for the finite 
medium can then be expressed as:   

(11)        ௠ܶ௘௔௡(ݔ, (ݐ = ଵ௅ ⋅ ∑ (−1)௡∞௡ୀ଴ ධ ௦ܶ௘௠௜ି௜௡௙௜௡௜௧௘(ݔ, ௅௡௅(௡ାଵ)(ݐ   ݔ݀

      = ೠ்೛⋅√௔௅⋅√గ௧ ⋅ ൬1 + 2 ⋅ ∑ (−1)௡ ⋅ ݁ష೙మ⋅ಽమర⋅ೌ⋅೟∞௡ୀଵ ൰  

The expression of Eq. (11) is the mean temperature response in a one 
dimensional wall of length L to an impulse of weight Tup on one side of the 
wall.  By extension, Eq. (12) provides the mean temperature response in the 
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wall for an impulse of weight Tup on one side and Tdo on the other side of 
the wall: 

(12)             ௠ܶ௘௔௡(ݔ, (ݐ = ( ೠ்೛ା்೏೚)⋅√௔௅⋅√గ௧ ⋅ (1 + 2 ⋅෌ (−1)௡ஶ௡ୀଵ ⋅ ݁ష೙మ⋅ಽమర⋅ೌ⋅೟ ) 
Consequently, to obtain the mean temperature in the one-dimensional 
medium of length L for any signals on the two sides of the medium, one 
needs to convolve the mean of the two signals (Tup + Tdo)/2 by the impulse 
response given by: 

(13)              ௠ܶ௘௔௡(ݔ, (ݐ = ଶ⋅√௔௅⋅√గ௧ ⋅ ൬1 + 2 ⋅ ∑ (−1)௡ ⋅ ݁ష೙మ⋅ಽమర⋅ೌ⋅೟ஶ௡ୀଵ ൰ 

It is worth noting that the impulse response for the mean temperature 
(Eq. (13)) is the same as the one used and demonstrated by Weber, Perner 
and Obernhuber [5]. 

Concerning the gradient temperature in the one-dimensional medium of 
length L, it can be calculated for any signal on the two sides of the medium 
by convolving the signal (Tup – Tdo)/2 by the impulse response [5] given by: 

(14)  ௚ܶ௥௔ௗ(ݔ, (ݐ = ଺⋅√௔௅⋅√గ௧ ⋅ ൬1 + 2 ⋅ ∑ ݁ష೙మ⋅ಽమర⋅ೌ⋅೟ஶ௡ୀଵ ൰ − ଵଶ⋅௔௅మ  

Air and water temperatures 
In this model the dam is sliced up into 10 layers (Fig. 2).  Each layer is 
considered as a one-dimensional medium and the mean and the gradient of 
the temperature field are individually computed from air and water 
temperatures using convolving products with the previously seen impulse 
responses (Eq. (13) and (14)). 

 
Figure 2. Dam slicing into 10 parts along the height. 

For each layer, the signal Tdo is the daily air temperature signal Tair and, 
depending whether the layer is above or below the water level, the signal Tup 
is the daily air temperature signal Tair or the daily water temperature signal 
Twater(d) at depth d, respectively. 

The daily air temperature signal Tair is determined by air temperature 
measurements.  As water temperatures are not monitored along the reservoir 
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depth, a model is used to predict the signal Twater(d).  The water temperature 
model is an empirical model based on two measurement surveys, one in 
summer and one in winter.  The temperature at the water surface is modelled 
by Eq. (15) where the angle Sw varies linearly between 0° (25 January) and 
to 360° (24 January the following year). 

(15)   ௦ܶ௨௥௙(ݐ) = 13 − 8 ∗ cos(ܵ௪)°ܥ 

Temperatures at different depths under the water surface are calculated by 
means of Eq. (16) where d is the depth under the water surface (in metres). 

(16)    ௪ܶ௔௧௘௥(݀, (ݐ = 5 + ( ௦ܶ௨௥௙(ݐ) − 5) ⋅ ݁ିௗ ଵଷ⁄  ܥ°

Statistical model and results 
As shown in Eq. (9), with some assumptions, at a given elevation the 
contribution to thermal displacements is proportional to the mean and the 
gradient of the temperature field calculated for this elevation.  The 
coefficients of influence M(h) and D(h) are adjusted statistically for each 
layer.  To account for solar radiation a seasonal function has been added to 
the model.  The formulation of the model is given by Eq. (17) where nL is 
the number of layers, Tmean,i and Tgrad,i are respectively the mean and the 
gradient of the temperature field calculated for the layer i. ଴ܻ = ܽଵ + ܽଶ ⋅ ݐ + ܽଷ ⋅ ଶݐ + ܽସ ⋅ ଷݐ + ܽହ ⋅ ସݐ + ܽ଺ ⋅ ܼ + ܽ଻ ⋅ ܼଶ 
(17)       +଼ܽ ⋅ ܼଷ + ܽଽ ⋅ ܼସ + ܽଵ଴ ⋅ cos(ܵ) + ܽଵଵ ⋅ sin(ܵ) + ܽଵଶ ⋅ cos(2S) 
                  +ܽଵଷ ⋅ sin(2S) +∑ ൫ܾ௜ ⋅ ௠ܶ௘௔௡,௜ + ܿ௜ ⋅ ௚ܶ௥௔ௗ,௜൯௡௅௜ୀଵ + ߳  

 
Figure 3. Comparison between displacement measurements with 
pendulum and displacements calculated by the model. 

It is worth noting that the modelled displacements reproduce the observed 
displacements well (Figure 3), particularly when these displacements are 
greater than usual (2003 heat wave for example).  These unusual 
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displacements are due to unusual thermal conditions and can be observed in 
Figure 4 which compares thermal displacements modelled by HST, HSTT 
and the new model.  When the thermal displacements of HST cannot take 
into account these unusual thermal conditions, those of HSTT and of the 
current model are more representative of the real thermal conditions. 

 
Figure 4. Comparison between thermal displacements calculated by HST, 
HSTT and the new model 

CONCLUSIONS AND PERSPECTIVES 
Different methods are used to estimate thermally induced displacements in 
concrete dams.  The use of temperature measurements appears to add 
important information for statistical models but it is not easy to utilise them 
correctly.  The new model presented in this paper, although it is more 
complex than HSTT (it adds water temperature measurements, separates the 
influences of several layers and take into account the gradient effect), does 
not improve significantly HSTT.  The scatter is slightly reduced and the 
correlation coefficient is equal to 0.9825 instead of 0.9803 for HSTT.  
Nevertheless, different improvements could be considered: 

• The air temperature signal is at a high frequency and could be 
incorporated in a smoother way. 

• The concrete temperature signal could be used in order to obtain a 
better assessment of the thermal field inside the structure. 

• Radiative effects and water temperature effects could be added in an 
improved way, using measurements. 

• The hypothesis of uni-axial conduction is not confirmed, in particular 
near the foundations. 
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To improve the statistical model it is also possible to use finite element 
simulations to evaluate and quantify all thermal effects (solar radiation, 
convection, transfer from foundations, etc.) and to validate the hypotheses 
and better assess the thermo-mechanical fields of the statistical approaches.  
Finally, it is possible to recapture statistical models, to clarify and to 
improve them in order to estimate more accurately the behaviour of arch 
dams. 
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